PREDIKSI HARGA CRYPTOCURRENCY XLM MENGGUNAKAN METODE DEEP LEARNING LSTM DAN GRU

PREDICTING XLM CRYPTOCURRENCY PRICES USING LSTM AND GRU DEEP LEARNING MODELS

Authors

  • Sadam Muhammad Natzir Universitas Amikom Yogyakarta
  • Harumawan Jatiprasetya Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.52972/hoaq.vol16no1.p49-58

Keywords:

Cryptocurrency, Deep Learning, GRU, LSTM, Prediksi

Abstract

Volatilitas pasar yang tinggi serta potensi keuntungan besar dari cryptocurrency menjadikan prediksi harga sebagai topik penelitian yang menarik. Penelitian ini bertujuan untuk memprediksi harga cryptocurrency Stellar (XLM) dengan menerapkan metode Deep Learning, yaitu Long Short-Term Memory (LSTM) dan Gated Recurrent Unit (GRU). Data yang digunakan mencakup harga harian XLM selama beberapa tahun terakhir, serta indikator teknikal dan aktivitas perdagangan. Model LSTM dan GRU dievaluasi berdasarkan akurasi dalam memprediksi harga XLM menggunakan metrik MAPE, RMSE, dan MSE. Hasil menunjukkan bahwa meskipun keduanya mampu menangkap pola tren jangka pendek, model GRU memberikan hasil yang lebih unggul. GRU mencatat MAPE sebesar 3.6164%, RMSE sebesar 0.0206, dan MSE sebesar 0.0004. Sementara itu, LSTM mencatat MAPE sebesar 4.5638%, RMSE sebesar 0.0244, dan MSE sebesar 0.0005. Temuan ini menunjukkan bahwa GRU lebih efektif dalam memodelkan kompleksitas dan non-linearitas data harga XLM dibandingkan LSTM. Dengan demikian, GRU dapat dipertimbangkan sebagai metode yang lebih unggul dalam prediksi harga cryptocurrency. Hasil penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan model prediksi yang lebih akurat serta membantu pengambilan keputusan investasi yang lebih bijak.

 

The high market volatility and significant profit potential of cryptocurrencies have made price prediction a compelling area of research. This study aims to predict the price of Stellar (XLM), a widely recognized cryptocurrency, by applying deep learning methods, namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The dataset includes daily XLM prices over the past few years, along with technical indicators and trading activity data. The LSTM and GRU models are evaluated based on their accuracy in predicting XLM prices using metrics such as MAPE, RMSE, and MSE. The results show that while both models are capable of capturing short-term trends, the GRU model outperforms LSTM. GRU achieved a MAPE of 3.6164%, RMSE of 0.0206, and MSE of 0.0004, whereas LSTM recorded a MAPE of 4.5638%, RMSE of 0.0244, and MSE of 0.0005. These findings indicate that GRU is more effective in modeling the complexity and non-linearity of XLM price data compared to LSTM. Therefore, GRU can be considered a superior approach for cryptocurrency price prediction. This study is expected to contribute to the development of more accurate forecasting models and to support better investment decision-making.

References

J. Mere, “Pembuatan Dan Pengujian Token Crypto Pada Jaringan Mainnet Menggunakan Smart Contract Binance Smart Chain (Bsc) Dan Remix.Ethereum,” HOAQ (High Education of Organization Archive Quality)?: Jurnal Teknologi Informasi, vol. 14, no. 2, pp. 82–89, Dec. 2023, doi: 10.52972/hoaq.vol14no2.p82-89.

W. Yin, M. Zhang, Z. Zhu, and E. Zhang, “A novel approach based on similarity measure for the multiple attribute group decision-making problem in selecting a sustainable cryptocurrency,” Heliyon, vol. 9, no. 5, 2023, doi: 10.1016/j.heliyon.2023.e16051.

T. Bakhtiar, X. Luo, and I. Adelopo, “The impact of fundamental factors and sentiments on the valuation of cryptocurrencies,” Blockchain: Research and Applications, vol. 4, no. 4, Dec. 2023, doi: 10.1016/j.bcra.2023.100154.

D. O. Oyewola, E. G. Dada, and J. N. Ndunagu, “A novel hybrid walk-forward ensemble optimization for time series cryptocurrency prediction,” Heliyon, vol. 8, no. 11, Nov. 2022, doi: 10.1016/j.heliyon.2022.e11862.

A. P. N. Nguyen, T. T. Mai, M. Bezbradica, and M. Crane, “Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods,” Physica A: Statistical Mechanics and its Applications, vol. 632, Dec. 2023, doi: 10.1016/j.physa.2023.129349.

H. Lee and D. Wie, “Gone with the fire: Market reaction to cryptocurrency exchange shutdown,” Heliyon, vol. 9, no. 7, Jul. 2023, doi: 10.1016/j.heliyon.2023.e18231.

A. S. Girsang and Stanley, “Hybrid LSTM and GRU for Cryptocurrency Price Forecasting Based on Social Network Sentiment Analysis Using FinBERT,” IEEE Access, vol. 11, pp. 120530–120540, 2023, doi: 10.1109/ACCESS.2023.3324535.

S. Syed, A. Iqbal, W. Mehmood, Z. Syed, M. Khan, and G. Pau, “Split-Second Cryptocurrency Forecast Using Prognostic Deep Learning Algorithms: Data Curation by Deephaven,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3331652.

M. Sajjad et al., “A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting,” IEEE Access, vol. 8, pp. 143759–143768, 2020, doi: 10.1109/ACCESS.2020.3009537.

S. O. Birim and ?. Öztürk Birim, “An Analysis For Cryptocurrency Price Prediction Using Lstm, Gru, And The Bi-Directional Implications,” 2022. [Online]. Available: https://www.researchgate.net/publication/359504764

N. Fauzi, A. Giffary, and F. Sulianta, “Prediction Of Cryptocurrency Prices Using Lstm, Svm And Polynomial Regression,” 2023. [Online]. Available: https://ajesh.ph/index.php/gp

X. Ruan, L. Wang, C. Thongprayoon, W. Cheungpasitporn, and H. Liu, “GRU-D-Weibull: A novel real-time individualized endpoint prediction,” Artif Intell Med, vol. 146, Dec. 2023, doi: 10.1016/j.artmed.2023.102696.

D. Xu, “Price Prediction of Cryptocurrency based on LSTM Model: Evidence from Ethereum,” Highlights in Science, Engineering and Technology, vol. 39, 2023, doi: 10.54097/hset.v39i.6639.

A. Kumar, N. Sharma, K. K. Gurna, A. Anand, J. C. Patni, and L. Pinjarkar, “Forecasting Stellar XLM Prices: Insights from ARIMA Analysis,” International Journal of Religion, vol. 5, no. 6, pp. 273–288, Apr. 2024, doi: 10.61707/7074ja52.

Singh Ashish, Kumar Abhinav, and Akhtar Zahid, “Bitcoin Price Prediction: A Deep Learning Approach,” IEEE Access, Oct. 20221.

F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,” Chaos Solitons Fractals, vol. 140, Nov. 2020, doi: 10.1016/j.chaos.2020.110212.

N. Ayoobi et al., “Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods,” Results Phys, vol. 27, Aug. 2021, doi: 10.1016/j.rinp.2021.104495.

S. Gegenleithner, M. Pirker, C. Dorfmann, R. Kern, and J. Schneider, “Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model,” Hydrol Earth Syst Sci, vol. 29, no. 7, pp. 1939–1962, Apr. 2025, doi: 10.5194/hess-29-1939-2025.

Q. Guo, Z. He, and Z. Wang, “Assessing the effectiveness of long short-term memory and artificial neural network in predicting daily ozone concentrations in Liaocheng City,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-91329-w.

M. Gauch, F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S. Hochreiter, “Rainfall-runoff prediction at multiple timescales with a single Long Short-Term Memory network,” Hydrol Earth Syst Sci, vol. 25, no. 4, 2021, doi: 10.5194/hess-25-2045-2021.

F. Landi, L. Baraldi, M. Cornia, and R. Cucchiara, “Working Memory Connections for LSTM,” Neural Networks, vol. 144, 2021, doi: 10.1016/j.neunet.2021.08.030.

X. Luo, D. Ma, S. Zhang, and D. Wang, “GRU neural network-based method for box girder crack damage detection,” Chinese Journal of Ship Research, vol. 17, no. 4, pp. 194–203, Aug. 2022, doi: 10.19693/j.issn.1673-3185.02415.

N. W. Saputra, F. Insani, S. Agustian, and S. Sanjaya, “Penerapan Deep Learning Menggunakan Gated Recurrent Unit Untuk Memprediksi Harga Minyak Mentah Dunia,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3552.

Yang Nian, Shi Dongxin, and Hua Yan, “Bidirectional Gated Recurrent Unit Neural Networks for Relation Extraction of Chinese Enterprises,” IEEE Access, 2020.

Lai Shanyan, Ye Chunyang, and Zhou Jiang Hui Hongyu, “Chinese stock trend prediction based on multi-feature learning and model fusion,” IEEE Access, 2021.

Z. S. Lin, “Enhanced GRU-based regression analysis via a diverse strategies whale optimization algorithm,” Sci Rep, vol. 14, no. 1, p. 25629, Dec. 2024, doi: 10.1038/s41598-024-77517-0.

M. Rasyid, E. A. Muharyanto, and E. S. Wagola, “Perbandingan Metode Peramalan Pada Penjualan Barang Dagang Cv Andika Di Pulau Buru,” 2023.

Amirabadi A.M., Kahaei H.M., and Nezamalhosseini A.S., “Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication],” Physical Communication, 2020.

Downloads

Published

03-06-2025

How to Cite

Natzir, S. M., & Jatiprasetya, H. (2025). PREDIKSI HARGA CRYPTOCURRENCY XLM MENGGUNAKAN METODE DEEP LEARNING LSTM DAN GRU: PREDICTING XLM CRYPTOCURRENCY PRICES USING LSTM AND GRU DEEP LEARNING MODELS. HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi, 16(1), 49–58. https://doi.org/10.52972/hoaq.vol16no1.p49-58