PERBANDINGAN KINERJA MODEL PEMBELAJARAN MESIN DALAM PREDIKSI BANJIR MENGGUNAKAN KNN, NAIVE BAYES, DAN RANDOM FOREST

Authors

  • Sadam Muhammad Natzir AMIKOM Yogyakarta

DOI:

https://doi.org/10.52972/hoaq.vol14no2.p59-64

Keywords:

KNN, Naïve Bayes, Prediksi Banjir, Random Forest, Machine Learning

Abstract

Penelitian ini menyajikan analisis komparatif model pembelajaran mesin untuk prediksi banjir menggunakan data historis curah hujan. Tiga model, yaitu K-Nearest Neighbors (KNN), Naive Bayes, dan Random Forest, dievaluasi berdasarkan metrik kinerja mereka. Evaluasi mencakup akurasi, presisi, recall, skor F1, dan ROC AUC. Hasilnya menunjukkan bahwa model Random Forest mengungguli yang lain, mencapai skor sempurna dalam semua metrik. Namun, KNN dan Naive Bayes juga menunjukkan kinerja yang kompetitif, meskipun dengan beberapa trade-off antara presisi dan recall. Temuan ini memberikan wawasan berharga tentang efektivitas berbagai pendekatan pembelajaran mesin untuk prediksi banjir, yang berkontribusi pada pengembangan sistem prediksi banjir yang lebih andal.

 

This study presents a comparative analysis of machine learning models for flood prediction using historical rainfall data. Three models, namely K-Nearest Neighbors (KNN), Naive Bayes, and Random Forest, are evaluated based on their performance metrics, including accuracy, precision, recall, F1 score, and ROC AUC. The evaluation results show that the Random Forest model consistently outperforms KNN and Naive Bayes. Random Forest achieves a perfect score (100%) on all measured indicators. Meanwhile, KNN and Naive Bayes also demonstrate competitive performance, albeit with some trade-offs between precision and recall. Specifically, for accuracy, precision, recall, F1 score, and ROC AUC, the Random Forest model scores 100%, whereas KNN and Naive Bayes are in the range of 90-95%. Nevertheless, KNN and Naive Bayes still show competitive performance and are worth considering as alternative flood prediction models. These findings provide valuable insights into the effectiveness of various machine learning approaches for flood prediction. The Random Forest model proves to be the superior approach, yet KNN and Naive Bayes also show significant potential. The results of this study contribute to the development of more reliable and accurate flood prediction systems, with important implications for disaster management and flood risk reduction..

References

C. J. Talbot et al., “The impact of flooding on aquatic ecosystem services,” Biogeochemistry, vol. 141, no. 3, pp. 439–461, Dec. 2018, doi: 10.1007/s10533-018-0449-7.

Wang Guangsheng, Yang Jianqing, Hu Yuzhong, Li Jingbing, and Yin Zhijie, “Application of a novel artificial neural network model in flood forecasting,” Environ Monit Assess, Jan. 2022.

A. Rajab et al., “Flood Forecasting by Using Machine Learning: A Study Leveraging Historic Climatic Records of Bangladesh,” Water (Switzerland), vol. 15, no. 22, Nov. 2023, doi: 10.3390/w15223970.

M. Moishin, R. C. Deo, R. Prasad, N. Raj, and S. Abdulla, “Designing deep-based learning flood forecast model with ConvLSTM hybrid algorithm,” IEEE Access, vol. 9, pp. 50982–50993, 2021, doi: 10.1109/ACCESS.2021.3065939.

S. Puttinaovarat and P. Horkaew, “Flood Forecasting System Based on Integrated Big and Crowdsource Data by Using Machine Learning Techniques,” IEEE Access, vol. 8, pp. 5885–5905, 2020, doi: 10.1109/ACCESS.2019.2963819.

Y. Tang et al., “flood forecasting based on machine learning pattern recognition and dynamic migration of parameters,” J Hydrol Reg Stud, vol. 47, Jun. 2023, doi: 10.1016/j.ejrh.2023.101406.

Vidya S, “International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Rainfall Based Flood Prediction in Kerala Using Machine Learning,” 2024. [Online]. Available: www.ijisae.org

U. Ahmed, R. Mumtaz, H. Anwar, A. A. Shah, R. Irfan, and J. García-Nieto, “Efficient water quality prediction using supervised machine learning,” Water (Switzerland), vol. 11, no. 11, 2019, doi: 10.3390/w11112210.

R. A. Asmara et al., “Prediksi Banjir Lahar Dingin Pada Lereng Merapi Menggunakan Data Curah Hujan Dari Satelit,” JIP (Jurnal Informatika Polinema) , 2021.

A. Habibi, M. R. Delavar, M. S. Sadeghian, and B. Nazari, “Flood Susceptibility Mapping And Assessment Using Regularized Random Forest And Naïve Bayes Algorithms,” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus Publications, Jan. 2023, pp. 241–248. doi: 10.5194/isprs-annals-X-4-W1-2022-241-2023.

S. Vijay and K. Kamaraj, “Ground Water Quality Prediction using Machine Learning Algorithms in R,” International Journal of Research and Analytical Reviews, vol. 6, no. 1, 2019.

“Smart Prediction of Water Quality System for Aquaculture Using Machine Learning Algorithms,” Journal of Current Trends in Computer Science Research, vol. 2, no. 3, 2023, doi: 10.33140/jctcsr.02.03.01.

M. YURTSEVER and M. EMEÇ, “Potable Water Quality Prediction Using Artificial Intelligence and Machine Learning Algorithms for Better Sustainability,” Ege Akademik Bakis (Ege Academic Review), 2023, doi: 10.21121/eab.1252167.

Md. M. Hassan et al., “Efficient Prediction of Water Quality Index (WQI) Using Machine Learning Algorithms,” Human-Centric Intelligent Systems, vol. 1, no. 3–4, 2021, doi: 10.2991/hcis.k.211203.001.

A. Tikaningsih, P. Lestari, A. Nurhopipah, I. Tahyudin, E. Winarto, and N. Hassa, “Telematika Optuna Based Hyperparameter Tuning for Improving the Performance Prediction Mortality and Hospital Length of Stay for Stroke Patients,” vol. 17, no. 1, pp. 1–16, 2024, doi: 10.35671/telematika.v17i1.2816.

Downloads

Published

30-12-2023

How to Cite

Natzir, S. M. (2023). PERBANDINGAN KINERJA MODEL PEMBELAJARAN MESIN DALAM PREDIKSI BANJIR MENGGUNAKAN KNN, NAIVE BAYES, DAN RANDOM FOREST. HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi, 14(2), 59–64. https://doi.org/10.52972/hoaq.vol14no2.p59-64