PENERAPAN METODE FUZZY K-NEAREST NEIGHBOR (FK-NN) UNTUK MENENTUKAN PENYAKIT PADA TERNAK SAPI POTONG
DOI:
https://doi.org/10.52972/hoaq.vol10no2.p66-72Keywords:
Beef Cattle Disease, Data Mining, Fuzzy K-Nearest NeighborAbstract
Cattle are one of the livestock commodities that are a mainstay as a source of protein. Animal is meat that is quite well known in the community. Decent meat taken from healthy livestock and free from diseases caused by diseases suffered by cattle must be handled seriously. Beef cattle breeders in East Nusa Tenggara, especially young cattle breeders, are hard to find by medical personnel such as compilation veterinarians to find sick cattle. On the other hand, the Livestock Service Office of NTT Province annually collects cattle disease data to draw conclusions about animal diseases in the regency / city in East Nusa Tenggara. Through data from the Kupang District Animal Husbandry Service, East Nusa Tenggara with data mining techniques can predict livestock disease using the Fuzzy K-Nearest Neighbor (FK-NN) algorithm. Fuzzy K-Nearest Neighbor (FK-NN) algorithm works by receiving input of diseases as input, then it will be processed with FK-NN algorithm and the results of processing become diagnoses of diseases suffered and therapeutic suggestions for diseases in beef cattle So it can increasing the yield of beef collected from beef cattle and minimizing the costs incurred by cattle farmers to care for infected livestock to consult with veterinarians.
References
Astiti, L.G.S, 2010. Petunjuk Praktis Manajemen Pencegahan dan Pengendalian Penyakit pada Ternak Sapi. Nusa Tenggara Barat. Balai Pengkajian Teknologi Pertanian NTB.
E.Akbas. 2008. FuzzyK-nearestneighborsclassifierthatwasproposedby J. M. Keller et.al.https://www.mathworks.com/matlabcentral/fileexchange/ 21326-fuzzy-k-nn.2008; 2019 Mei 19.
Hamdan A, Rohaeni S.E. 2010. Budidaya Sapi Potong. Kalimantan Selatan. Balai Pengkajian Teknologi Pertanian Kalimantan Selatan.
KementerianPertanianDirektoratJenderalPeternakandanKesehatanHewanDirektoratKesehatanHewan. 2014. Manual PenyakitHewanMamalia.
Kurnianingtyas Diva, Rahardian B.A., Mahardika D.P., Kartika A., dan Angraeni Dwi. 2017. Sistem Pendukung Keputusan Diagnosis Penyakit Sapi Potong Menggunakan K- NearestNeighbour (K- NN). Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK).Vol. 4. No. 2, Juni 2017.Hlm. 122-126.
Nugraha S.D., Putri R.R.M., dan Wihandika R.C. 2017. Penerapan Fuzzy K-Nearest Neighbor (FK-NN) Dalam Menentukan Status Gizi Balita.Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 1. No. 9, Juni 2017.Hlm. 925-932.
Ompusunggu E.A., Ratnawati D.E., dan MuflikhahLailil. 2017. Identifikasi Penyakit Tanaman Jarak Pagar Menggunakan Metode Fuzzy K-Nearest Neighbor (FK-NN). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 1. No. 5, Mei 2017.Hlm. 368-377.
Prasetyo, Eko. 2012. Data Mining Konsep dan Aplikasi menggunakan matlab . Yogyakarta: Andi.
Priyanto Dwi. 2016. Strategi Pengembalian wilayah Nusa Tenggara Timur Sebagai Sumber Ternak Sapi Potong. Jurnal Litbang Pertanian. Vol. 35. No. 4 Desember 2016. Hlm. 167-178.
Rialdi B.R, Hidayat N, Suprapto. 2018. Identifikasi Penyakit Pada Kambing Menggunakan Metode Fuzzy K-NearestNeighbor (F-KNN). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 2. No. 10, Oktober 2018. Hlm. 4312-4317
Tjahajati Ida,Gunanti, Suwarno, Sutisna Abadi, Widjajanti Sri, dan Raharjo Enuh. 2014.Manual Penyakit Hewan Mamalia. Direktorat Jenderal Peternakan dan Kesehatan Hewan Kementerian Pertanian.
Tyas R.D.O, Soebroto A.A, Furqon M. Tanzil. 2015. Pengembangan Sistem Pakar Diagnosa Penyakit Sapi Potong Dengan Metode Fuzzy K-Nearest Neighbour. Journal of Environmental Engineering & Sustainable Technology. Vol. 02 No. 01, Juli 2015, Hlm. 58-66
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 High Education of Organization Archive Quality: Jurnal Teknologi Informasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi diterbitkan berdasarkan lisensi Creative Commons Attribution 4.0 International License (CC BY 4.0). Lisensi ini memungkinkan setiap orang untuk Berbagi: menyalin dan mendistribusikan kembali materi ini dalam format atau bentuk apapun; Adaptasi: merombak, mengubah, dan membuat turunan dari materi ini untuk keperluan apa pun, termasuk keperluan komersial, asalkan mereka memberikan pengakuan kepada Penulis Asli atas hasil karya aslinya.