PERBANDINGAN INTERPOLASI DAN EKSTRAPOLASI NEWTON UNTUK PREDIKSIDATA TIME SERIES
DOI:
https://doi.org/10.52972/hoaq.vol10no2.p73-80Keywords:
time series, poverty data, newton interpolation, newton extrapolationAbstract
For numerous purposes, time series data are analyzed to understand phenomena or behaviors of variables, and try to find future value. Interpolation is guessing time series data point between the range of data set. Extrapolation is predict or guessing time series data point from beyond the range of data set.
In this study, Newton’s Extrapolation is compared with linear and squared extrapolation. Newton’s Extrapolation making the assumption that the observed trend continues for values of x outside the model range.
The robustness of prediction using Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE). The results of newton’s interpolation with bottom, middle, and top approaches found the best value are middle approach, namely RMSE 76,01 and MAPE 4,65%. In Newton’s Extrapolation, the error values are consistent at bottom, middle, and top approaches, namely RMSE 541,170 anda MAPE 33,19%. Based on data from the Statistics of Indonesia on the percentage and number of poor people in East Nusa Tenggara Province in 2010 -2018 is declining trend pattern. The error value with Linear, Quadratic, and Newton’s Extrapolation shows the robust value results at linear or trend extrapolation, namely RMSE 157,450 and MAPE 7,93%. These results indicate Newton's extrapolation works well on non-linear data and requires a combination method with soft computing methods such as Fuzzy Systems, AG, or ANN
References
Pratama, R., Sianipar, R.H., Wiryajati, K., 2014, Pengaplikasian Metode Interpolasi dan Ekstrapolasi Lagrange, Chebyshev, dan Spline Kubik Untuk Memprediksi Angka Pengangguran di Indonesia, Jurnal Dielektrika, Jurusan Teknik Elektro, Universitas Mataram, 1(2), 116-121
Lamabelawa, M.I.J., 2017, Analisis Perhitungan Metode Interpolasi Pada Data Time Series Kemiskinan NTT, Jurnal Hoaq – Teknologi Informasi, STIKOM Uyelindo Kupang, 8(1), 635-641.
Lamabelawa, M.I.J dan Soekarto, B., 2016, Pendekatan Baru Prediksi Data Kemiskinan NTT Dengan Fuzzy Time Series, Jurnal Hoaq – Teknologi Informasi, STIKOM Uyelindo Kupang, 7(2), 554-561.
Badan Pusat Statistik, Konsep dan metodelogi perhitungan penduduk miskin, Badan Pusat Statistik, https://www,bps,go,id,, diakses 08 November 2019.
Djumaty, B. L., Tanaamah, A.R., Wowor, A.D. 2013, Peramalan Produksi Ubi Kayu Propinsi Jawa Tengah Menggunakan Algoritma Ekstrapolasi Polinomial Newton, Prosiding Seminar Nasional Sistem Informasi Indonesia, SESINDO, 2-4Desember 2013, Bali, Halaman 281- 285.
Opuku-Sarkodie, R., Acheampong, E., Enu, P., Bokoum, A., Gardiner, F.A., Manu, T.A., 2015, Mathematical Model to Extrapolate the Population of Ghana: An Application of Newton’s Devided Difference Formula, Asia Pasific Journal of Multidisciplinary Research[www.apjmr.com],22 Jan 2015; Unduh [2019-12-10] 3(2), 17-25.
Astuti, L.W., Sudarwanto., Ambarwati, Lukito., 2018, Perbandingan Metode Lagrange dan Metode Newton pada Interpolasi Polinomial dalam Mengestimasi Harga Saham, Jurnal Matematika Terapan, LPM-Universitas Negeri Jakarta, 2(1), 25-35.
Kurniawan, S,, Wijaya, A,F,, Domai, T,, 2014, Evaluasi Kinerja Program Pengentasan Kemiskinan (Studi Program Anti Kemiskinan Bidang Pertanian di Kabupaten Tuban), Jurnal Wacana, 17(3), 117-125.
Anggara, D., 2015, Pemodelan Data Panel Kemiskinan di Provinsi Nusa Tenggara Timur Menggunakan GEE dan GLMM, Tesis, Prodi Statistika Terapan, Institut Pertanian Bogor, Bogor(ID).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 High Education of Organization Archive Quality: Jurnal Teknologi Informasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi diterbitkan berdasarkan lisensi Creative Commons Attribution 4.0 International License (CC BY 4.0). Lisensi ini memungkinkan setiap orang untuk Berbagi: menyalin dan mendistribusikan kembali materi ini dalam format atau bentuk apapun; Adaptasi: merombak, mengubah, dan membuat turunan dari materi ini untuk keperluan apa pun, termasuk keperluan komersial, asalkan mereka memberikan pengakuan kepada Penulis Asli atas hasil karya aslinya.