PREDIKSI PERTUMBUHAN EKONOMI DI KECAMATAN TASIFETO TIMUR MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION (PSO)
Keywords:
tasifeto east, growth, economics, particle swarm optimizationAbstract
Border area is an area that is on the outermost line of a bordering country and separates other countries. One of them is Belu Regency which is the entrance to the border area between Indonesia and Timor Leste. The development of the economic aspect of the border area needs to be carried out in a balanced manner and pay attention to the welfare of the community by looking at the spatial aspect so that all economic activities are not centered on one focus or place, Economic growth is the process of changing the economic condition of a country continually toward better circumstances during a given period. Economic growth is also defined as the process of expanding the production capacity of an economy in which national income increases in terms of future economic growth. Economic growth forms one of the basic goals that a country's economy wants to achieve, for economic growth is a quantitative measure that describes the development of an economy in a particular year compared with the preceding year. East Tasifeto is a sub-district in Belu Regency, East Nusa Tenggara, Indonesia. This district is about 14 km to the east of the city of Atambua. The capital city is Wedomu,Manleten Village. The population is mostly Tetun-speaking. There are a few who speak kemak and bunak. This sub-district is directly adjacent to the State of Timor Leste so that the problem that often arises is the problem of illegally crossing human and goods borders. In the East Tasifeto sub-district there are 12 divisions of villages/sub-districts consisting of: Silawan, Tulakadi, Sadi, Umaklaran, Manleten, Fatuba'a, Dafala, Takirin, Bauho, Sarabau, Tialai, Halimodok. The economic growth prediction application using Particle Swarm Optimization (PSO) has been successfully designed and built to produce economic growth applications in East Tasifeto District, Belu Regency, although not all the constraints set by the government are met and produce the best value displayed.
References
Juhardi U, Andilala. Optimalisasi Penjualan Motor Menggunakan Algoritma Particle Swarm Optimization (PSO). Jurnal Media Infotama. 2019.
Metty. Konsep Pengembangan Ekonomi Kawasan Perbatasan Berbasis Keruangan Di Desa Silawan Kabupaten Belu-NTT. [Internet]. [diunduh 2021 Feb 26]; Tersedia pada: http://eprints.itn.ac.id/405/2/eprints.pdf.
Mansur, Prahasto T, Farikhin. Particle Swarm Optimization Untuk Sistem Informasi Penjadwalan Resouce Di Perguruan Tinggi. Jurnal Sistem Informasi Bisnis. 2014.
Nilawati L, Achyani YE. Optimasi Metode Particle Swarm Optimization (PSO) Pada Prediksi Penilaian Apartemen. Paradigma – Jurnal Komputer dan Informatika [Internet]. [diunduh 2020 Des 14]; 21(2), 227-334. Tersediapada: https://ejournal.bsi.ac.id/ejurnal/index.php/paradigma/article/view/6159/pdf. 2019
Pamungkas Adi. Penerapan Algoritma Particle Swarm Optimization (PSO) Pada Kasus Prediksi. [Internet]. [diunduh 2020 Nov 27]; Tersedia pada: https://pemrogramanmatlab.com/2020/02/08/penerapan-algoritma-particle-swarm-optimization-pso-pada-kasus-prediksi/. 2020.
Rosita A, Purwananto, Soelaiman R. Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear. [Internet]. [diunduh 2020 Nov 24]; Tersedia pada: https://www.researchgate.net/publication/277798406_Implementasi_Algoritma_Particle_Swarm_untuk_Menyelesaikan_Sistem_Persamaan_Nonlinear/fulltext/57bb384e08ae8a9fc4c277b7/Implementasi-Algoritma-Particle-Swarm-untuk-Menyelesaikan-Sistem-Persamaan-Nonlinear.pdf. 2012.
Ridla MA,. Particle Swarm Optimization Sebagai Penentuan Nilai Bobot Pada Artificial Neural Network Berbasis Backpropagation Untuk Prediksi Tingkat Penjualan Minyak Pelumas Pertamina. Jurnal Ilmiah Informatika. (2018). [Internet]. [diunduh 2020 Des 14]; Vol 3 No.1/ juni 2018. Tersedia pada:https://core.ac.uk/download/pdf/276635785.pdf
Saharuna Z, Widyawan, Sumaryono S. Simulasi Deployment Jaringan Sensor Nirkabel Berdasarkan Algoritma Particle Swarm Optimization. Jurnal Nasional Teknik Elektro dan Teknologi Informasi. [Internet]. [diunduh 2020 Des 14]; 55281.Vol.1, No.3, November 2012. Tersedia pada: http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/123. 2012.
Siregar AM. Pengelompokan Bidang Laju Pertumbuhan Ekonomi Indonesia menggunakan Algoritma K-Means. Jurnal Accounting Information System(AIMS). 2019. [Internet]. [diunduh 2020 Des 10]; Vol 2, No 2. Tersedia pada: http://journal.stkom.ac.id/index.php/aims/article/view/71. (2019).
Wahyono H, Lay B, John RB. Dampak Pengembangan Pos Lintas Batas Negara (PLBN) Motaain Pada Kawasan Perbatasan RI-RDTL Di Kabupaten Belu Provinsi Nusa Tenggara Timur. Jurnal Pembangunan Wilayah dan Kota. [Internet] [diunduh 2021 Feb 22]; Vol 14, No 1,2018, 29-39. Tersedia pada: https://ejournal.undip.ac.id/index.php/pwk/article/view/18246/pdf. 2018
Wati DAR, Rochman YA. Model Penjadwalan Mata Kuliah Secara Otomatis Berbasis Algoritma Particle Swarm Optimization (PSO). Journal article Jurnal Rekayasa Sistem Industri. 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Seminar Nasional & Konferensi Ilmiah Sistem Informasi, Informatika & Komunikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.

