DETEKSI CALON KREDITUR MOTOR DENGAN NAÏVE BAYES CLASSIFIER (STUDI KASUS: PT. FIF CABANG KUPANG)

Authors

  • Miransyah Koroh STIKOM Uyelindo Kupang
  • Marlinda Vasty Overbeek STIKOM Uyelindo Kupang

Keywords:

Prospective customers, Credit descent, Classification, Naive Bayes Classifier

Abstract

Prospective customers of PT. Federal International Finance (FIF) who applied for motor credits came from various backgrounds of work, residence and character. Therefore, given a large number of submission of motor credits every month as well as the various types of prospective customers, it is very necessary a system that is able to handle the problem of appraisal appropriateness applying for motor credits accurately. To obtain an accurate and precise classification value in order to produce a classification value with a good accuracy, the data used will be trained with the method of Naive Bayes Classifier by dividing the data using k = 4 to obtain the best model, resulting in a value with the result of accuracy calculated by Measured the comparison of the target class against the actual class, and the resulting measurement being 78% Precision, Recall 54%, with an overall accuracy of 68%. The system is expected to take decisions quickly and accurately in order to assist the Head Unit of credit in determining the decision of credit appropriately and quickly.

References

Arifin, Miftakhul. 2009. Human Face Detection Using Bayesian Method,Surabaya[ID]: Institut Teknologi Surabaya.

[BPS] BPS Provinsi NTT. 2016. Statistik Kendaraan Roda Dua Kota Kupang. Kupang [ID]: BPS.

Ciptohartono, C.C., 2014, Algoritma Klasifikasi Naive Bayes untuk Menilai Kelayakan Kredit. Semarang [ID]: Udinus Semarang.

Firmansyah. 2011. Penerapan Algoritma Klasifikasi C4.5 untuk Penentuan Kelayakan Pemberian Kredit Koperasi. [Tesis]. Jakarta [ID]: STMIK Nusa Mandiri

General Manager Marketing Adira Finance Kupang, 2016. Penjualan PT. Adira Finance Kupang. http://www.ntt-news.com. Diakses 5 Februari 2016.

Han, J. Kamber, M. Pei. 2012. Data Mining Concept and Technique. Ed. 3. Waltham [US]: Morgan Kaufmann.

Nugroho, H.F., Suryati, P. 2013, Aplikasi Sistem Pendukung Keputusan Pengajuan Kredit Sepeda Motor. [Skripsi]. Semarang [ID]: Semnastik.

Prasetyo, E. 2012. Data Mining: Konsep dan Aplikasi menggunakan Matlab. Yogyakarta [ID]: Andi.

Downloads

Published

2021-10-18

How to Cite

Koroh, M. ., & Overbeek, M. V. (2021). DETEKSI CALON KREDITUR MOTOR DENGAN NAÏVE BAYES CLASSIFIER (STUDI KASUS: PT. FIF CABANG KUPANG). Seminar Nasional & Konferensi Ilmiah Sistem Informasi, Informatika & Komunikasi, 487–494. Retrieved from https://publikasi.uyelindo.ac.id/index.php/semmau/article/view/132